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NATIONAL ADVISORY C0_J_ITTEE FOR AF,RO}[AUTICS

ADVANCE i_STRICTED REPORT

A fI_T!!OD FOR SIUDYING PIS_0N _.Rl,TlOh

By J. E, Forbes and E o S, Taylor

INTRODUCTION

The purpose of this inves_igat.ien was to develop a method

for determining dJ.rocb].!rth_ frio"bion force botv_een the piston

comb u_t_o_ ongir.:ceand cylinder of an inter_ml _ _' ' _

The method _ "_ _-_ "r._ ,_.ns_,_ in oiastioally mou._tl._.._the cylinder

barrel so tn,.._,it can have t_ small motion -oarallcl to its axis,

and prow'_'.In._'suitable "<"m..,aI_"_for recording its inst.'._nt':,onoous

displacement°

DESCRIPTION OF APPAR__TUS

_" " ._,_naCylinder I{ccdCy±:_.n.acr_

The cylinder borre! in the form Of a light slcovo (sec

fig. I(I)) is ol'a::_pedo_ the inner circu.<ff'orcnces of two

atom!at steoi diaphragms (2). The outer circu,v£orcntial edges

of the. die<phragj_s are c!_mped to a cyli,:idrical water j.'__.ckot(3)

by mea::s of a steel pla.te (4) at one end and the cylinder head

(._) at the other end.

The c}f].inder head closes the corJ)ustion chamber with a

,Old, tO.1"_ _-_,n_,oed _,_c"-_lon." This section is meochined so as to form

a labvrinbh sea].. (6) to the cortoustmon _.-os_s and yet not restrain

the oylindor-s].oevc motion, The labyrinth section of the head
is ie,.d-ol.atod so as to insure a close _it with a mini_tmm of

friction.

7 well _'_ "_""_o_ opticalTwo so"rk-_lu< wcils _, ) _nd a co....'-]-_:-._oan

lever (8) ,'__rescaled off from the jacket cooling water by _._cans

of flexible neoprene seals (9). Those seals _ert no aporccia0!e

constraint on the cylinder motion.



Vent hol<s (I0) drilled in the side of the cylinder head
into th@ space above th,_ di__phragmtake care of gas ]o1-a-_-.-_.-o,-
t_ough the labyrinth, and assure atmosohoric T_rcssuroon the
uoper diaphragm°

Reduction of gas leakage through the labyrinth ix provided
by a duo%(ii) leading through the top of the cylinder head to
the center of the labvrintho Lubricating oil similar to that
us-_d in the engine is pumpedby meansof an externally driven
oil pumpthrou_;h this duct at a pressure of about %0poundsper
square inch, The ell passes through the labyrinth into the
space (12) above the uDDerdiaphr_,_ and then out through the
__,_uholes to the oil-mn,]]o reservoir. Under :favorable running
conditions only a sn_all percentage of this sealing oil flovrs into
the combustion cha_oor.

Cylinder-Displacement _£easuringSystem

The dis_._lacementof the cylinder sleeve is recorded photo-
graohically on motion-picture film by meansof an optical lever
and strio camera (reference i). (See figs. 2, 3, 4, and ,%)

A film sosed of 2_ inches per second was used tb_ou_hou_o the

tests° Th_ masnification of the cylinder-sleeve displacement,

by means of the optical syst_)m, was 70_6. (See fig. 6_) Cali-

bration curves of th_ static oorfermance of the r_'eording

system at two different water-jacket t_mr,@ratures are shown in

figure 7- These and similar curves wore obtained by statically

loading the assembled cylinder when the regular cylinder head

had been reo!aced by a "du_._y head." This dur_%r head was a steel

ring which clamped the outer edge of the upper diaohrsgm firmly

in its place° A ste_l plug fitting into the exposed end of the

cylinder served as a loading platform. During those tests the

piston v:as removed from the cylindQro Actual sle_v@ disolacement

due to static load _,_asmeasured by a sensitive dial gage. Strios
st_of fil:m ,m.-_rcrun through the camera v_ith aud without c_ch _t_c

lead. Those records gave the net film-trace displacements

corrcs oonding to the dial-gage readinss or loads.

The curves of l lgurc 7 shov; t_a_ the s_l..,_ncss ef the

diaohragms varies vrith water-jacket tomooraturoo A curve of

,_iaphrag_n st iffriess covering tho ,t@mperature-operating range

of the t@sts pros(_ntod in this r_pert is shown in fi_ure 8.
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Pistons

The aluminum--a.lloy piston with its five cast-iron piston

rings shown in figure 9 _'as used. throughout the tests pertaining

to the effects of speed, load, and viscosity. The cast-iron

piston, also illustrated in figure 9, was used only in the

"running-in" test,

Engine

The comoloto cylinder _:sombly was mou_te, d on a sts.ndard

CFR cr_,nkcase. A shorter conn.ecti_tg rod (length - 8.00 in.)

thu,n standard with the CFi< was usea, giving a crank-throw to

com-,.ecting-rod-length ratio of 0_28!. The bore and stroke were

sta'qdard 5.2_ by 4o_ inches, The compression ratio was _o0_.

Lub_.i<_ation System

fhe standard CFR oil pump was removed, and a motor-driven

oil puml,TM subsSituted t_ circulate the e.':.%gine-lubricating oil.

Oil temneraturo _,_.scontrolled _y mc_ans of a heat exchanger

t]-roug.h,which .aither steam or _.,_.r_,_eror both could be oiroulat,,_d.

Oil to_..:n'a_ueo was measured in the oil 9ur_p by moans of a va_or-

pre r_sur_ thermom_tor.

Cooling Sysl;em

Cooling was aocomnlish_d by a clos%d system consisting of

a 7-gallon "tank, a. separ_:_tol)f metot-driven centrifugal puree, a

heat cxch_nger, and the cy!indor wa_er jacket. The heat exohan.gor
was similar to that us_d on the lu},ricating system. Distilled

water containing a rust i_hibitor _s used in this closed system

so as to reduce resting of the o_oosed areas of the ctiaph.ra_s

and the cylinder sleeve, A. mercury-in-glass thermomGtcr in-

serted in the upper end o.f the w_aber jacket was used to measure

the jacke'l_-water t_moer_ture. Cold tap water w_:.scirculatQd

through the cylinder h_ad. The torao¢,raturo of this water was

measured ;_y a me._cury-in-glass thcrz_omctor loc_;,tod at the coolin_ _-

water out].ct of the head.

j[" F
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Inlet System

Fuel-air mixturm was supplied to the engine from a @aporizing

tax:Lk (reference 2). The inl_t air passed through a fuel-mixing

orifice inserted in the _r_porizing tank, The air flow to th<_ t<_nk

_+._scontrolled by a throtb]:.in{_ valve, Fuel was me_tsurod by moans
of a calibrated rotamoter, ]!!{ixturcte..uperature v_s measured by

a morcu_-y-in-glass tLcr_r_omcter p].ac::_din the inlet pipeQ V_:tnoriz-

ing tank pressure _.vs.smeasured by a mercury manometer°

Engine !nstrumcnts

Engine soood was controll<_d by a combination Of o. conventional

ta.chomstcr a,,nd a stroboscopic light running directly from the 60-

cycle supgly th_.ub il].uminatcd painted strins on the fl_mcei

(ref:_ren0o 2), _%.nelectric dynamometer m_.s used, Pressure

....... _....... _-_ sto_ndard M.I.T.ag_:tinst cr641o.]{-_J.n!>:]_o @.i<isr_:_],_]svfas ODoO.]..,._CG froI_t %_ "-"

balancod-prcssuro indic_,.tor using m,n },,,'.!.1'..diapl:,.rafimprcssuro

unit (refcrcncos .._"_J 4)°

Roduction of Data

A typical photo{_Traphic record of the sleeve disolacemont

is shorn in fi_mre i0, which is a firing record taken at 203%

tom. The hc.a+_o_vcrtica! lines are the ton-convoY loc<_ting limes

produced by a f!_shing noon lig,hto (See fig, 2.) This noon

lig[_f_flashes simu!tanoous!y _vi'bh the ignition spark. The

oosition of the neon ].igi_b in the caners is such as to m_rk the

film 0°26 inch from the record trace and thus locate the ignition

crank an _ o_ the time axms. O _ogr_es of cra_ an_lo along

th_ film axis, with a film speed of 2% inches nor second and an

engine speed _<_ rpm, corresgond to a length L on this axis

oau..:_ibe 4,17 8/N inch_ Hono(_ ton center on the film trace is

located a distance (0_26 - L) inch along the time a:_:isto the

loft of 'the oen-0or of the noon lamp flash.

The dim diffuse line <:pnearing ps.rallol to the time azis in

most of the records is s roflacbod trace of the light source from

the front surfnce of the l(-_n.s° The records in general show



cssentia!!y three typos of excitation of the s].ecve_ that is_
over-all displacemen$s corresponding to the piston strokcs_ a
rather prominent excitation occurring during the firing strokes
and finally some.high-frequency excitation of comp-._ratively low
amplitude, Photographic records of the natural frequency of
vib_'ation of the cylinder s!oeve with engine completely asse_lcd,
also with piston removed, and the dur,_myhead in p!acc of the
regular cylinder head are shorn in figure i]., Those reo0rds
together with calculations madeof the natural froqucnoy of
vibration of the sleeve from its 1_,.no_._.... stiffness and weight show
theft the prominent excitation Of the sleeve in all the records
corresponds to its natural frequei,._cy, The origin of the high-
frequency oxcit_:bion is not conclusively kno-_a_

Owing to the fact that the diaphrag_nsystem was sensitive
to temperature changes, there appeared to be no satisfactory
method of recording on the films a "zorn line," that is, a line
indicating the equilibrium position of the cylinder s!eevc when
no force was acting o;a ib_ Establisl'mto_:_tof tb.e probable zero
line was accomplished in the fo]lov_ing ma,z_ior: An enlarged
trace of' the _ 1........ _pno_ogr:q_',o record was m_uoin an ,3nL._rging.cameras
A straight line para!lel to th_ film _.otion is then so drawn as
to intcrscct t_io enlarged '_'eoord at four oqua!ly seated points

during the time inter_.l of (_aoh cycle_ T._is line is then taken

as the zero line from which all diso!acemcnts on the enlarged

record arc measurod_ From the zv_..g_ification of the enlargement

and thq _,_.il__....s calibration curve (fig._ 0), the disolacoments

arc roadi!y converted into Qou.i._Icnt piston_frictio_, forces on
the assumotion that "-_c inertia and damping forces are negligible

co_.par_d to the diaphragm force,

}_hilc the Inca.rich of the-truc zcro line may bo somcv_hat in

doubt_ and thus produce _rrors in the true instantaneou_ piston-

friction forces, it is significant that +.he Distort-friction work,

as obtained from the work loons, is not subject to a_._yerror

made in locating this line, The _Tork loops are the basis for

comouting piston-friction moan-effective prcssurcs, end the

piston-friction horscoo_vcrs heroin reported, and hcnce these

values are not subject to zero-line location crrors_

The effects of speed upon piston friction wore first

measured° Both motoring an@. firing runs were made over a speed

range of I000 to 2%00 rom at full-throttle sctting_ The mixture

ratio v:as set in all cases at best po-_ver_ Snark advance v_.s kept

const_nt at 22°@ Cylinder-sleeve oooling-v_.tor temgcrature and

oil temperature wore each kept constant at 180 ° F. Inlct-.mixturo
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temncr_)_ture was maintained constant at 140o F_ and cylinder-head

coo].ing-wator tQKoorature at _0 ° F. A low cylinder-head cooling-

water temmerature was mair_tai'aod so as 9o minimize the _ossibility

of melting the lead plating on the labyrinth section of the

cy!inder head. The lubricating oil used in these runs was SAE

40, baying a visoositj of 23_9 centiDoise at 180 ° F°

A series of those speed records is shor_ in figure 12.

Piston-friction work cycles obtained from some of tbeso

records are shorn in figure 13o The l;otal area enclosed by the

•two loops represents ths oiston-f_iction work per cycle.

The solid-line loons arc_ for the expansion-e_._haust strokes

while the dashed lines arc for the in!ot-connression strokoso

This scheme of differentiating the two phases aoolies to all

piston-fz'iotion work loops nresentod in this reneff°

Piston-friction .,_eau-effocti',Te "oressures computed from those

work diagrams a.r(:plotted against s-need in figure !4_

Firing oiston-friotion moan-offeotiv<_ pressures ov.;r the

tested soeed range vary from !8 to 46 _oorcent higher than those

for motoring° This difference ir_ the relative -<,.agnitnde, shown

by the piston-friction men.n-effoctiv:_-prossuro curves in figur._

14 , probably accounts to _" l;:_..rgeextent for the similar divergence

depicted in the b'_voindicated m.-_an-offeotivc-prossuro curves,

The low(3r indicated moan-effective-pressure curve was obtained

by _ddins -_he brak'._-motorimg and brake-firing curves, whereas the

other indicator curve was o]sbainod by use of the H._IoT, high-

speed on_inc indico.tor (references 3 a_:d 4)° Firi.'.!.gpiston-

friction r1_an-affootivc pressure zncr.e.asos .._.....rl a,with sooed

and is about 45 percent greater at 2{00 rum t}_:,:.qat I000 tom,

A considor,o.blo nunber of check ruz:s rote made on these

speed records. Co;].parison of the chock records v<ith those of

-the original runs showed vary good rcnroducibility both in

magnibude and structure°

Effect of Lo_d

The affect of load on pisto_.t friction at 1m_ro difi'oront

:L., ..£Lspeeds is shovJ_t it, figure i_, "_ the corresponding work loops

are shorn in figure 16. The variation of _iston-,friotion mean-

effective pressure with indicated mean-effective pressure for



i

J

the _;vo different speeds is sheba in figure 17. The engine was

run at the s_ne temperatures and with the sam_ quality oil

(SAE 40) as in the speed runs. Indicated mean-effective pressures

were derived from indicator diagrams obtained with the M.I.T.

high-speed _ngine indicator (references 3 and 4).

At 1500 tom a change of i pound per square inch indicated

moan-effective pressure produces a change of 0_033 pound per

square inch in piston-friction mo',_.n-off_ctive pressure, while

at 2.500 rpm a 1-pound change in indio_:_ted mean-effective pressure

increases the piston-friction moan-effective pressure 0o028 pound.

The cha:ngo of piston-friction moan-effective pressure with

speed at any p_rticul<<r loc_d is of the sa<_leorder of magnitude

as found in the speed tcsts_

Dependence of piston-friotiol_ force on oil arid cooling-

_vatcr te_apcraturc is shoi'n;_in figure 18_ Those records both

of motoring and firing rums _';erc ta2:¢:_ at a constar,b soood of

1800 r]0m_ with SJ,E 20 oil. The oil o.nd oylinder-_vator-jackct

te_._oeraturos were kept equal to each other and varied ow:r a
.........._ _ hold constant atrange of _bout !00 ° Fo l_:,.letb_._ocr_.,t_._ewas

140 ° F v_hilc the head-ooo!ing water was ]:opt at 48 ° F. S_ork

advance _<r,s22° and :,_lixturere,tic set for best pov_or. Correspond-

ing piston-friction _ork diagrom_s are shown in figure I_°

._o -_&_riation of _iscositios with bompor_,_turo of the _vo

oils uscd in ....._,n_o_ tests is sh.ov,T,in figure 20.

'. 1 J-P_o_s of piston-friction moan-effective oressurc against

oil vi:_cosity at jnckct temperature both for motoring a_d

±mr_.cg ar_,.:,_ show_z in figure 21.

Examination of the -_4 _ •__r_ng photographs (fit. IS(b)) sho_;._s

a rather _'_e_es __ ....oorform_-,_nce at 133 ° F v_hero alternate

neriods of tv:o cycles seezz to reproduce thomseivos. Examination

of the piston rings after the runs with SAE 20 oil showed con-

siderablc scuffing° No <.,ooz<,cz_,olescuffing of the r!ngs

_ i_,_ presence of scuffingappeared after _ho runs using o._z 40 oil. _,e
mi<ht account for th.c erratic behavior of the records a)qd the
• O"

i_'_e,gularity of the lov,'er curve in fi:%ur_ 21. The fact bhat the

._uobori_).gruns _m3ro tak,>n after !::he firzng runs ......



orderly _,r_nd r_n.gnt indicabe that the scuiflng condition.... had

boon reduced by the time those runs v.roromade° _'igur{) 9i sho<'s
2O

,_m condition of the rings after the motoring runs vrith SAE

oil.

& comoarison of the pisto_-friotion moan-effective pressures

at equal viscosities based on water-jacket temperatures and at

the s:<.nospeeds and loads for the two oils used in the;so tests

, ,_0 b Dr I. -o '_is snovm, in table, both for firing and • _ "",_"

Ccntipoiso Piston

Oil SAE rpm h °F at j:).ckst fmop

temperature Ib/sq in.

t , 4.0 I ].800 180 23,5 . .

i14°t°rir'g 20 1800i 142 I 23._ i 6.3 i
', < .............................._ ..................!

I.........................'!..................................40 1800!d--............180 i1 2]_ _ _819_I

i Firing ' ,-, I ' "' _0 1800 142 23.5 , _.5

i....................-................................ _.........................t ........................... ' .................

Piston-Friction Horsepowcr

Piston-friction horsopovrer is clotted against motoring

horsooowor and firing-friction horsepov_er in figure 22. The

firing-friction-horseoo_ver curw_s v.roro obtained [<r subtracting

the firing brake horseoo_:,_crs from the3 indicated oov"er takem

.ro_,_ indicator cards. The curves irdicato that for-bhoso

oxoori, len_s the motoring pisto___-friction horsspo_',ver amou_-ts to

ro[_gh].y 16 oercent of the motoring horseoo,,ver, and that the

firin_ piston-friction horse_,o;:_<,ris about 26 percent of the

_uotor iY'_g hcf s oD ov,ar,

It shou'Id be nohod that motorin_ and firin_/;-friction horse-

po_:,.,<_'roath includ.cs bearing friction and pumping friction in

addition to oisbon friction.

!t should be mentioned that the scaling oil vchich leaks

i_;uo the coz:_bustior..chanOor from the cylinder-head labyrinth

may reduce t!<c piston friction belov,r that which would bc

obto.in_d with norr.r,l lubric:;:tion.
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Running-In Test

For comparative purposes a now cast-iron piston was sub-
stitutod for the alura:,.num-all% piston. This piston (see _'¢

9B) had t]_oo piston rings and a skirt much longer than that of

th,9 aluminum one. The _o pistons gave the same compression

ratio.

Records of motoring friction taken _'_;iththis piston at 900

rpm are shown as _ funot'_.on of running-in t_uo in figure 23.

At intervals betv_oon these records the motoring speed was

occasion_lly run up to lO00 rp_,b _nd during an early one of

those speed ir.,.crsascs_-n tms%o'_dy brak_ load indicated signs of

piston seizing. Examination of the piston after these runs wore
comolctod showed scoring of tho piston (fig. 9B) and pick-up on

the cylinder. In spite of the scoring, a rather si_uificant

decrease in piston friction with running-in t_uo ,is indicated by

the d_croasing ampii'tudos of %he records in figure 23.

CONCLDS!0NS

The results __ust bo regarded as of a preli_uinary nature

until nero experience v,_ith this a0paratus l,ms beer, obtained.

It appo_',rs safe to conclude, hou_evor, that the method has

intoruot_n_ possibilities for research in the field of piston

friction. Further work is suggested to include an attemot to

coraparo oiston_ friction alone, measured by motoring, with piston

friction obtaimod by this method, and to exoloro systematically

the e.tfoc,s of differo_:'cos in piston and ring design.

Sloan I_boratories for Aircraft and Automotive Engines,

i,_i_ssachuso,_to Institute of Technology,

Cambridge, Ms ss.
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NACA Fig. I

Figure 1.- Assembly dzawing of frlction engine cylinder.



NACA Pig. 2
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PLAN VIEW OF CAMERA PLANFVIEW
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SII;E VIEW OF APPARATUS

Figure 2.- Details of optical system for recording cylinder
sleeve displacements.
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NACA Figs. 3,5
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Figure 3.- Dynamometer en4 of friction engine.

Figure 5.- Details of fr_ctlon engine camera.
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NACA Fig. 6
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Figure 6.- Calibration of cylinder sleeve displacement recording
mechanism.
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NACA Fig. 7
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